最適化問題

最適化問題は、一般に次のように定式化される。

min f(x) xはベクトル
gi(x) = 0 i = 1, . . . ,me
gi(x) < 0 i = me + 1, . . . ,m
xl < x < xu
  • 制約式のない場合は、制約のない最適化問題とよぶ

The general optimization problem has the form:

min f(x)

subject to:

gi(x) = 0 i = 1, . . . ,me
gi(x) < 0 i = me + 1, . . . ,m
xl < x < xu

In particular, if m = 0, the problem is called an unconstrained optimization problem.

解とアルゴリズムの基本的性質:Basic Properties of Solutions and Algorithms

ミニマム点の定義

  • Definition:A point x* is said to be a relative minimum point or a local minimum point of f if there is an ε > 0 such that f(x*) =< f(x) for all x such that ||x-x*||<ε. If the inequality is strict for all x ><x* then x* is said to be a strict relative minimum point.
  • Definition: A point x* is said to be a global minimum point of f if f(x*) < f(x) for all x . If the inequality is strict for all x without x* then x* is said to be a strict global minimum point.

定理1:1次元の最少値の必要条件 First-order necessary conditions

fがスカラー関数の場合、もしx*がローカルに最少であるならば、任意のベクトルdに対して内積f'(x*)・dが正または0である。

  • Let f in C1. If x* is a relative minimum, then for any vector d which is feasible at x*, we have f'(x)d >= 0. (f'(x) is the gradient, i.e. the vector of partial derivatives of f at x.)
  • f'(x)は勾配ベクトル

[証明] h(t) = f(x* + td)をテーラー展開すると

h(t) = h(0) + t・h'(0) +o(t)

となる。t=0がミニマム値であるから任意のtに対してt・h'(0)>=である。

By a one-sided Taylor expansion of the function h(t) = f(x* + td), which is defined in the interval [0, α], we obtain that h(t) = h(0) + t・h'(0) +o(t). Since 0 is a relative minimum of h we obtain that th'(0) >= 0, for all t small enough, which implies that h'(0) >= 0. The claim now follows from the chain rule.

補題

もしx*が最少の極値を与えるならば、f'(x*) = 0が成り立つ。

If x* is a local minimum then f'(x*) = 0.

勾配:ベクトル

The gradient of f is defined to be the vector field whose components are the partial derivatives of f. That is:

index.php?plugin=ref&page=%E5%BE%AE%E5%88%86%E4%BF%82%E6%95%B0&src=gradiant.png

Here the gradient is written as a row vector, but it is often taken to be a column vector.

例題

Example: Consider the function f(x, y) = x2 −xy +y2 −3y. From the first order conditions we get that x* = 1 and y*= 2. This is a global minimum. (Why?)


トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2009-10-08 (木) 17:50:02 (5324d)