#freeze
*パラメトリック励起振動(励振)とは [#x8cb9ff6]
通常のバネ・ダンパー系やブランコなどの運動は、2階の線形微分方程式で表わされる。そして、その解はには、2つ固有値からなる振動モードと制動から、ステップ状の入力に対しては、大きく振れながら一定値に収束していく。しかしながら、ブランコで例えれば、外力を加え続けることで、揺れがおおきくなるような現象が現れる。このように、固有値を決めるパラメータに一定の変化を加えることで、振動をおおきくするような現象をパラメトリック励起振動という。
#ref(dynamics-of-parametric-oscillator.JPG)

* 単振動の運動のモデリング[#p6c19531]
糸の長さはLで一定とする。鉛直方向との角度をθとする。支点は(0,0)で動かない。

鉛直方向の力のバランスは、糸の張力をSとすれば
 m d2y/dt2 =mg - S cosθ
水平方向の力のバランスは、
 m d2x/dt2 = - S sinθ
cosθ=y/L、sinθ=x/L を代入して、上の2式を整理すると
 m d2y/dt2 =mg - S y/L
 m d2x/dt2 = - S x/L
ここで θが十分小さいと仮定する。cosθは1に近いのでy/L=1 すなわちyはLに近似できる。またd2y/dt2=0としてよい。
上側の式は0=mg - S に近似できる。これからS=mgを下側の式に代入して消去する。
  m d2x/dt2 = -(mg/L)x
mを両辺から消す
 d2x/dt2 = -(g/L)x
これが横方向の運動方程式である。

書きなおすと
 d2x/dt2 + (g /L)x =0
特性方程式は
 F(λ)=λ^2+ω^2 但し ω=√g/L
F(λ)=0の解は、+iωと-iωなので、上記の微分方程式の解は
 X(t)=Ae^(iωt)+Be^(-iωt). あるいはx(t)=Acostωt+Bsinωt
で表わされることになる。

#ref(harmonic-oscillator.JPG)
*パラメトリック励起振動のモデリング [#fc96efa6]
支点が上下方向にy0(t)のように、動く場合の単振動を考えよう。
鉛直方向の力のバランスは、糸の張力をSとすれば
 m d2y/dt2 =mg - S cosθ   (1)
水平方向の力のバランスは、
 m d2x/dt2 = - S sinθ    (2)
である。
ただし。
 X=Lsinθ
 y(t)=y0(t) + Lcosθ
時間tの関数は、θ と y0 である
これより,(1)式を y0の運動に書き換える。
 d2y/dt2 = d2(y0(t) + Lcosθ)/dt2=d2y0/dt2+Ld2(cosθ)/dt2
d2(cosθ)/dt2=d{-sinθdθ/dt}/dt=ー{cosθdθ/dt+sinθd2θ/dt2}であるので

 d2y/dt2 = =d2y0/dt2-L{cosθdθ/dt+sinθd2θ/dt2}
これを使って、m d2y/dt2 =mg - S cosθ を書き換えると、
 m (d2y0/dt2- L{cosθdθ/dt+sinθd2θ/dt2}) = mg - S cosθ    (1)’
一方 (2)式をθの微分方程式に書き換える。
 d2x/dt2 =L d2(sinθ)/dt2 = -L sinθ
 m d2x/dt2 = -mL d{cosθ dθ/dt}/dt=-mL{-sinθdθ/dt+cosθd2θ/dt2} = - S sinθ
整理すれば
 mL {-sinθdθ/dt+cosθd2θ/dt2} = - S         (2)' 
上の式から、Sを求められる。(1)'にsを代入して整理する。
 m (d2y0/dt2- L{cosθdθ/dt+sinθd2θ/dt2}) =mg +mL cosθ{-sinθdθ/dt+cosθd2θ/dt2}
整理する。
 (1/L)d2y0/dt2-cosθdθ/dt+sinθd2θ/dt2 =g/L + {-sinθcosθdθ/dt+(cosθ)^2 d2θ/dt2}

 m (d2y0/dt2- Lcosθ) = mg + mLcosθ d2θ/dt2 
mを消去して整理
 Lcosθ d2θ/dt2 +g = (d2y0/dt2- Lcosθ)
これが、θとy0に関する運動方程式である。
θが、十分小さい時はcosθ=1と近似して
 d2θ/dt2 +g/L =(1/L)d2y0/dt2-1


 d2x/dt2 + (1/L)(g+L - d2y0/dt2)x = 0
あるいは
 d2x/dt2 + (g/L)X = {(1/L)d2y0/dt2-1}X
左辺は、自由単振り子の式であり、右辺は強制項とも考えられる。

d2y0/dt2が値をもつばあい、つまり支点が加速度運動をしていれば、重力加速度がg+L - d2y0/dt2に従って変化するのと同じ。



*y0(t)=αsin2ωt (L>>α>0)の場合 [#c9fdafc9]
ブランコの角速度ω0の2倍の角速度で支点を上下させる場合を考える。

#ref(parametric-oscillator.JPG)

d2y0/dt2=-4αω^2sin2ωt なので、これを
 d2x/dt2 + (1/L)(g - d2y0/dt2)x = 0
に代入する。
 d2x/dt2 + (1/L)(g +4αω^2sin2ωt)x = 0
ω0=√g/L として
 d2x/dt2 + (ω0^2+4(α/L)ω^2sin2ωt)x=0
  (1/ω0^2)d2x/dt2 + (1+4(α/L)(ω/ω0)^2sin2ωt)x=0
以上より、パラメトリック励起振動の微分方程式は、次式で表される。
 (1/ω0^2)d2x/dt2 + (1+4εsiin2ωt)x=0
 ε=(α/L)(ω/ω0)^2   ω0=√g/L 
εが0の時が単振動である。
#ref(dynamics-of-parametric-oscillator.JPG)

トップ   編集 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS