*フェルマーの原理 [#be308f84]
フェルマーは光の進路についての簡潔な法則をも発見している。 それは「光線は目的地まで最短時間で到達できる進路を選ぶ」というものである。
-フェルマーの原理の正確な表現
 「光は 2 点間を結ぶあらゆる可能な経路の内、経路を連続的にわずかに変えたときに、
 その光学的距離(経路を通過する時間)の変化が起こらないような経路をとる。」 
-この簡潔な原則から光の反射角や屈折角までもが説明できてしまう。 光がガラスに入るところで少し曲がり、出るときにも少し曲がるのだが、その進路は光が最短時間で到達できるようなルートになっている。

--光はその最短のコースをどうやって選ぶの?不思議なんだね。光は、はじめから最短のコースがわかっている?
--ファインマンという人は、光は全ての方向に反射・屈折していて、目的の場所に至るコースは無限にあるのではないかと考えた。最短コース以外の場所では、距離が長くなるので光の波長がずれ、互いに干渉しあい打ち消しあってしまうので最短経路の光を見れることになる。

*ラグランジェの方程式 [#o5d3b838]
図のように長さL1 とL2 の糸の先に,質量がそれぞれm1 とm2 の質点をつるした系(2重振子)を考える.
 (a) 重力加速度をg として,この系のLagrangean を書き下し,Euler-Lagrange の運動方程式を求めよ.
 (b) 振幅の小さい微小振動の場合についてこの系の基準振動数を求めよ.
#ref(furiko2.JPG)
-重り1,2 のy 軸に対する角度をθ1, θ2 とする.重り1 の位置G1 の座標(xG1, yG1) 及びその速度VG1は
 xG1 = l1 sin θ1
 yG1 = −l1 cos θ1
 VG1 = lθ'
-重り2 の位置G2 の座標(xG2, yG2) 及びその速度VG2 の2 乗は
 xG2 = l1 sin θ1 + l2 sin θ2
 yG2 = −l1 cos θ1 − l2 cos θ2
 VG2^2=(l1 θ˙1 cos θ1 + l2 θ˙2 cos θ2)^2 + (l1 θ˙1 sin θ1 + l2 θ˙2 sin θ2)^2
      = (l1θ˙1)^2 + (l2θ˙2)^2 + 2l1l2 θ˙1 θ˙2 cos(θ1 − θ2)
-重り1 の運動エネルギーT1 及び位置エネルギーU1 は
 T1=1/2m(l1θ˙1)^2
 U1 =−m1gl1 cos θ1
-重り2 の運動エネルギーT2 及び位置エネルギーU2 は
 T2 =1/2m2[(l1θ˙1)^2 + (l2θ˙2)^2 + 2l1l2 θ˙1 θ˙2 cos(θ1 − θ2)]
 U2 = −m2g(l1 cos θ1 + l2 cos θ2)
-この2 重振り子のラグランジュ関数L は,
 L = T − U= (T1 + T2) − (U1 + U2)
-ラグランジュ関数L からθ1 θ2 に関するラグランジュ運動方程式をたてるには以下の関係式
を用いればよい.
#ref(lagrange1.JPG)
-これを解くと、θ1,θ2 に関するラグランジュ運動方程式が得られる。
#ref(lagrange2.JPG)
*基準振動数 [#ff21cf2f]
n個の振動子からなる連成振動ではその運動方程式はn個の連立線形常微分方程式となり,その解は一般に個の単振動の合成として表される。その単振動を基準振動 ,またその振動数を基準振動数という。この例題の場合は振動子2個ゆえ,2個の基準振動の合成となる。
-微小震動の場合、sinθ=θ、cosθ=1と近似してみる。また、2次の項を省略して、線形近似の運動方程式をたてる。解析解が求まる:2 つの基準振動の和であらわされる
#ref(furiko3.JPG)

トップ   編集 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS